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Two similar classes of evidence-accumulation model have dominated theorizing
about rapid binary choice: diffusion models and racing accumulator pairs.
Donkin et al. (2011) examined mimicry between the Ratcliff diffusion (RD:
Ratcliff & Smith, 2004) and the linear ballistic accumulator (LBA: Brown &
Heathcote, 2008), the two least similar models from each class that provide a
comprehensive account of a set benchmark phenomena in rapid binary choice.
Where conditions differed only in the rate of evidence accumulation (the most
common case in past research), simulations showed the models supported
equivalent psychological inferences. In contrast, differences in two other
parameters of key psychological interest, response caution (the amount of
information required for a decision), and non-decision time, traded-off when
fitting one model to data simulated from the other, implying the potential for
divergent inferences about latent cognitive processes. However, Donkin et al.
did not find such inconsistencies between fits of the RD and LBA models in a
survey of data sets from paradigms using a range of experimental manipulations.
We examined a further data set, collected by Dutilh et al. (2009), which used a
manipulation not surveyed by Donkin et al.; practice. Dutilh et al.’s RD model fits
indicated that practice had large effects on all three types of parameters. We
show that the in this case the LBA provides a different and simpler account of
practice effects. Implications for evidence accumulation modelling are

discussed.



Measurements related to performance in choice tasks underpin many
psychological investigations. When choices are rapid (i.e., made in a few seconds
or less), not only the response chosen, but also response time (RT), is of interest.
This is particularly the case where choices are scored for accuracy, as inferences
about psychological processes based on either accuracy or RT alone are
confounded when participants engage in a speed-accuracy trade-off (e.g.,
increasing accuracy by increasing RT). The most successful method of
addressing such confounding is to fit the data with an evidence-accumulation
model, as inferences based on model-parameter estimates address potential
speed-accuracy trade-off. A second advantage of this approach is that it titrates
the time required to complete decision and non-decision processes.

However, there are several different evidence accumulation models that
provide apparently equally comprehensive accounts of the benchmark
phenomena common to a range of rapid choice paradigms (Ratcliff & Smith,
2004; Brown & Heathcote, 2005, 2008). This led Donkin, Brown, Heathcote and
Wagenmakers (2011) to question whether there was potential for different
models to support conflicting inferences about psychological processes.
Simulation results showed there was indeed room for such ambiguity, but
reassuringly, they failed to find any evidence that it occurred in a survey of
empirical data sets. However, we show here that ambiguity does occur in data
collected by Dutilh, Vandekerckhove, Tuerlinckx and Wagenmakers (2009) on
the effect of practice on binary choice in the lexical decision task (i.e., deciding if

a string of letters forms a word) and discuss the implications.



Evidence Accumulation Models

Until relatively recently, successful evidence accumulation models assumed
that choice errors are mainly caused by random fluctuations in evidence from
moment-to-moment during a choice trial (Ratcliff & Smith, 2004). Accumulating
(i.e, summing) evidence over time averages out this stochastic noise, increasing
accuracy. Speed-accuracy trade-off is explained by changes in response caution,
which determines the evidence boundary required to trigger a response. A
higher boundary requires a longer period of accumulation to obtain the required
evidence, increasing both RT and accuracy. However, such models have been
shown to be unable to provide a comprehensive account of rapid choice
performance without the addition of extra sources of noise due to trial-to-trial
fluctuations (Ratlciff & Rouder, 1998). For example, the widely applied Ratcliff
Diffusion (RD) model assumes trial-to-trial noise in the mean rate of evidence
accumulation (v) and the accumulation starting point (z, i.e., the evidence total
before stimulus-based accumulation begins).

Brown (2002) investigated whether all three types of noise are necessary in
another comprehensive model, Usher and McClelland’s (2001) leaky competitive
accumulator (LCA). Surprisingly, he found only the trial-to-trial noises were
required to provide the same comprehensive account of benchmark phenomena
as the original LCA model and the RD model. For example, speed-accuracy trade-
off can occur due to trial-to-trial noise because longer accumulation overcomes

random biases caused by starting-point noise. Brown and Heathcote (2005a)



called this non-stochastic LCA, the Ballistic Accumulator!. Brown and Heathcote
(2008) showed that an even simpler version, the Linear Ballistic Accumulator
(LBA), which drops non-linear leakage and competition effects in the LCA, also
provides a comprehensive account. These simplifications have the advantage
that they make it possible to derive an easily computed likelihood function,
facilitating applications of the LBA (e.g., Eidels, Donkin, Brown & Heathcote,
2010; Farrell, Ludwig, Ellis & Gilchrist, 2009; Farrell, Ludwig, Ellis & Gilchrist,
2010; Forstmann, Schafer, Anwander, Neumann, Wagenmakers, Bogacz, Turner,
2010; Forstmann, Dutilh, Brown, Neumann, von Cramon, Ridderinkhof &
Wagenmakers, 2008; Ho, Brown & Serences, 2009; Ludwig, Ellis, Hardwicke &
Gilchrist, in press).

Donkin et al. (2011) compared the two least similar of the models just
discussed, the RD and LBA, by fitting one to data simulated from the other. For
simulated experimental manipulations affecting only the rate parameter the
models were in qualitative agreement. In contrast, simulated RD response
caution manipulations affected not only LBA response caution, but also its rate
and non-decision time parameters. Conversely, simulated LBA response caution
manipulations affected RD non-decision time estimates as well as response
caution. However, Donkin et al. did not find any evidence for similar
disagreements in fits of both models to a range of empirical data sets.

Here we extend Donkin et al.’s (2011) search for different psychological
conclusions from fits of the two models to the same empirical data set. We focus

on a data set collected by Dutilh et al.’s (2009) for several reasons. First, they

1The term ballistic was used to indicate the deterministic nature of accumulation within a trial,
and does not indicate that a change of input during a trial has no effect accumulation (see Brown
& Heathcote, 2005b).



experimentally manipulated response caution. Second, they collected a very
large amount of data for each participant, which facilitates model fitting. Third,
their psychological focus, practice effects, caused large changes in the three
primary RD model parameters, rate, response caution and non-decision time.
Below, we review details of Dutilh et al.’s (2009) experiment, model and findings.
We then propose an LBA model and report the results of fitting it to the same
data. Our aim was to determine whether an LBA model that provides a good
description of Dutilh et al.’s (2009) data could imply different parameter-based

inferences about the psychological processes underpinning practice effects.

Dutilh et al.’s (2009) Model and Results

Figure 1 illustrates Dutilh et al.’s (2009) model of the lexical decision task. In
this task participants must decide as quickly as possible whether a letter-string
stimulus makes up a word or is a non-word. Evidence is represented by vertical
position and time by horizontal position. Increases in evidence favour word
decisions and decreases in evidence favour non-word decisions. Stimulus
encoding is assumed to take a time ¢,, after which evidence accumulation
commences at a starting value of z. The start point lies between an evidence
boundary of 0 for a non-word decision and a for a word decision; a is called a
boundary separation parameter. The decision is unbiased if the staring point lies
half way between these boundaries (i.e., z = a/2).

The irregular line in Figure 1 represents an instance of the evolution of
evidence over time. The fluctuations are caused by the addition to a constant
evidence input provided by the encoded stimulus of normally distributed

moment-to-moment noise, with mean zero and standard deviation s. A decision



occurs when evidence first crosses a decision boundary (dotted horizontal lines
in Figure 1). A word decision is made for a crossing at a and a non-word decision
for a zero crossing. Figure 1 shows a word decision at time te+tq. The irregular
evidence path illustrates how moment-to-moment noise can lead to a speed-
accuracy trade-off; if the lower boundary were raised sufficiently (or
equivalently if the starting point were sufficiently biased toward non-words) a
fast non-word decision would have been made. Once the boundary crossing
occurs a response is made after response production time t;, so RT =t + tq + t.

Once the stimulus is encoded it provides evidence at a mean rate vw for
words and vy for non-words. In Figure 1 the stimulus is a word, which produces
a positive mean rate indicated by the large arrow. The mean rate varies between
trials according to a normal distribution. Ratcliff (1978) proposed this type of
trial-to-trial variability in applying the diffusion model to recognition memory
for words. In this application, where a different item is used on every trial, trial-
to-trial rate variability can be interpreted as being caused by item differences.
However, even when stimuli are identical within a condition, the RD model
estimates substantial trial-to-trial rate variability, so factors such as fluctuations
in attention are also a likely cause. The starting point also varies between trials
according to a uniform distribution with mean z and width sz, reflecting trial-to-
trial fluctuations in bias. Sequential effects due to prior trials are one likely cause
of this type of variability.

Dutilh et al. (2009) also assumed uniform trial-to-trial noise in non-decision
time (i.e., the sum of stimulus encoding and response production times), centred
on a mean value ter with width st. The inclusion of this fourth source of noise is

justified by Ratcliff, Gomez and McKoon'’s (2004) modeling of word frequency



effects in a lexical decision task. They found it necessary to add ter variability in
order to account for the effect of word frequency using only mean rate
differences. In particular, the addition was necessary to capture the effect of
word frequency on the leading edge of the distribution of RT for correct
responses, as measured by the 10t pecentile (i.e., the RT below which the fastest
10% of responses occurred). Without t.r variability the frequency-related change
in the 10t percentile was too small, as rate differences have only small effects on
the RD leading edge. Because t.r variability widens the fast tail of the RT
distribution, it increased the rate difference effect to a level that Ratcliff et al.

deemed sufficient to account for the word frequency effect.

Design and Data

Each of Dutilh et al.’s (2009) four participants performed 25 blocks of 400
trials. Practice was divided into five separate sessions of five blocks, and
participants responded to the same 200 words and 200 non-words in each block.
Two participants (A1l and A2) were instructed to emphasize accurate
responding, whereas the other two (S1 and S2) were asked to emphasize
response speed. These instructions were reinforced by feedback after each trial:
for speed “too slow!” for responses less than 750ms and for accuracy “error”
after errors, with “too fast” after responses less than 200ms in both cases. Such
instruction manipulations reliably induce a speed-accuracy trade-off, and are
modelled as selectively influencing boundary separation (Ratcliff & Rouder,
1998).

Figure 2 shows results (circles joined by dotted lines) for the performance

measures on which Dutilh et al.’s (2009) reported model fit: the 10th, 50t



(median) and 90t percentiles? of RT for correct responses (Figure 2a), and
response accuracy (Figure 2b). The plots also contain fits of our LBA model,
discussed below, as black dots. Dutilh et al.’s fits were extremely accurate, with
negligible deviations from the data. Their fit’s ability to follow minor fluctuations
between practice blocks reflects the fact that they estimated 225 parameters per
participant (9 for each block of trials), and might be viewed as over-fitting (i.e.,
allowing the model unwarranted flexibility). However, as they discuss, this
approach was taken in order to make no assumptions about the functional form
of practice effects, which is controversial for observed mean RT (Heathcote,
Brown & Mewhort, 2000).

Figure 2 shows a strong trade-off as a function of instruction early in
practice. Accuracy participants (A1l and A2) increased speed markedly
throughout practice, although at a decreasing rate, while they maintained a fairly
constant high accuracy. Speed participants (S1 and S2) improved with practice
mainly in accuracy. They also improved in speed over the first quarter of practice
but remained relatively constant thereafter. RT changes were accompanied by
positively correlated RT variability changes, as is commonly found

(Wagenmakers & Brown, 2007).

Parameter Estimates

In order to explore the effects of practice, Dutilh et al. (2009) specified a very

flexible model, with separate values estimated for every type of parameter in

2As is conventional, Dutilh et al. (2009) also reported the 30t and 70t percentiles. We excluded
these as they made the graphs harder to interpret and added nothing about the pattern of data,
or the goodness-of-fit of the LBA model.



each practice block, with one exception, fixing s = 0.1. The latter assumption is
conventional in diffusion modelling, as it fulfils the mathematical necessity of
fixing at least one parameter to make estimates identifiable. However, as pointed
out by Donkin, Brown and Heathcote (2009), identifiability only requires s to be
fixed in one condition, so fixing s in all conditions enforces the assumption that
the process causing moment-to-moment noise is unaffected by experimental
factors. Bias was parameterized as the ratio z/q, so a bias ratio of 0.5 indicates
unbiased responding. Rate mean and variability were also allowed to vary as a
function of lexicality (i.e., between words and non-words).

Parameter estimation was achieved by Bayesian methods applied separately
to each participant, yielding 10,000 posterior samples apiece. Fluctuations in
parameter estimates over contiguous blocks were often very large. Extreme
instability caused Dutilh et al. (2009) to have to exclude data from the first block
for A2 despite pre-processing that eliminated responses faster than 250ms and
longer than 2000ms. In order to aid interpretation of effects on the central
tendency of posterior parameter estimates in the face of this estimation
variability Dutilh et al. overlaid plots of posterior distribution samples with
cubic-spline smooths based on medians as a function of practice. In the following
we summarize their findings.

Rates. Central tendencies for mean rates (v) began higher for accuracy than
speed participants and were generally higher for words than non-words, except
S2, where they were similar. They also increased with practice, except for A2
where they were constant. Rate variability (sv) estimates were less precise, that
is, they had much more dispersed posterior distributions, and effects on their

central tendency less regular. They were generally higher for words than non-
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words. For accuracy emphasis participants, they decreased with practice for
words but were constant for non-words. For speed emphasis participants they
generally increased with practice for both words and non-words.

Boundary Separation and Bias. Boundary separation (a) central tendencies

for speed emphasis participants were smaller than for accuracy emphasis
participants. They decreased with practice substantially for A2, somewhat for A1
and S2, and were relatively constant for S1. Speed participants were relatively
unbiased on average, whereas accuracy participants moved from a small word
bias to a small non-word bias over practice. Estimates of start-point variability
(sz) were very imprecise, and their central tendency did not differ much between
participants or with practice.

Non-decision time. For accuracy participants both mean non-decision time

(ter) and variability (st) showed a substantial and largely monotonic decrease
with practice, by more than 0.1s in the former case, and halving in the latter case.
For speed participants ter decreased at first then increased, with the change
being about half that for accuracy participants. For S2 the decrease in st with
practice was substantial and monotonic, whereas for other participants it was

relatively constant.

Linear Ballistic Accumulator Model

Figure 3 illustrates, in a similar format to Figure 1, a LBA model of the lexical
decision task. In an accumulator model, such as the LBA, there is one unit that
accumulates evidence for each choice. Each accumulator has a separate input
derived from the stimulus, evidence that it is a word and evidence that itis a

non-word. The two types of evidence have independent normal distributions
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from trial-to-trial3. Figure 3 illustrates a word-stimulus trial for which an error
occurs due to start-point variability. Word evidence has a higher mean, vww, than
non-word evidence, vnjw, Where the upper-case subscript indicates stimulus type
and the lower case subscript the accumulator. Evidence standard deviations
(svwjw and svnw) are sufficiently large that the two distributions overlap,
potentially causing errors. However, this is not the case in Figure 3, where
accumulation (indicated by thin dashed lines) is faster for the word unit than the
non-word unit.

Instead, the error depicted in Figure 3 is caused by trial-to-trial start-point
variability, which has a uniform distribution between zero and Aw for the word
accumulator and An for the non-word accumulator. Figure 3 illustrates a trial in
which bias favours the non-word accumulator (i.e., it has a higher start point
than the word accumulator). For the boundaries depicted, the head start for the
non-word accumulator is sufficient to overcome its rate being lower than that of
word accumulator. That is, an error occurs because the non-word accumulator
crosses its boundary, at bw, before the word accumulator crosses its boundary, at
bn. For higher boundaries an accurate but slower response can occur, as the
higher word rate eventually causes the word accumulator to overtake the non-
word accumulator, exemplifying a speed-accuracy trade-off. Finally, Figure 3
shows non-decision time (ter) in the same way as FigureZ2. Variability in ter (st)

has not been needed to obtain good fits in past applications of the LBA. However,

3If both evidence rate samples are negative neither accumulator can cause a response. In past
LBA applications the probability of such cases has been negligible. In the fits reported here we set
this probability to zero by assumption (i.e., we assumed the rate samples were from an
uncorrelated bivariate normal truncated to remove these cases). The corresponding likelihood is
obtained by dividing the likelihood given by Brown and Heathcote (2008) by the area of the
truncated bivariate normal rate distribution.
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in the present application ter estimates often became implausibly small and error
RT tended to be slightly overestimated, whereas both tendencies disappeared
when we estimated st. Estimating st greatly increased the computational cost, as
likelihoods must be obtained by numerically integrating the convolution (i.e.,
addition of random variables) of decision and non-decision time numerically. To
limit this cost the same value of st was assumed for all conditions.

Fitting

We fit the LBA model to Dutilh et al.’s (2009) data using the methods
described in Donkin, Brown and Heathcote’s (2011) tutorial. First a set of models
is selected with different numbers of parameters, representing the effects of
manifest (e.g., practice, P, or stimulus type, WNW) and latent (e.g., word vs. non-
word accumulator, wnw, correct vs. error evidence, c) factors. Next, each model
is fit by maximum likelihood estimation, using the best fits of simpler models as
initial guesses for the fits of more complex models. We specified linear models
(i.e., the design matrices used in linear regression) on the 4, B, v, and ter
parameters, or on transformations of these parameters that enforced bounds on
the estimates. Positivity of 4, B and t.r (and st) was enforced by a logarithmic
transformation.

For linear models with more than one factor the design specified all main
effects and interactions. Each factor had full degrees of freedom except the
practice factor, which we specified in terms of a four-parameter cubic spline
basis, paralleling Dutilh et al.’s (2009) use of cubic spline smoothing on
parameter estimates after the estimation process was complete. The basis was
created by the ns() function in R (R Development Core Team, 2011), which

placed three knots at suitably chosen quantiles of the predictor, practice block
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(see Hastie, 1992, for details). We obtained similar results using a cubic
polynomial description of the 25 level practice factor. In both cases the levels of
the practice factor were assumed equally spaced. We did attempt to fit a models
with separate parameter estimates for each block of trials but for some blocks
and participants this resulted in unstable parameter estimates.

The most complex LBA model, which we will call the top model, paralleled
Dutilh et al.’s (2009) RD model. The log(4) and log(ter) parameters were both a
function of practice (4 parameters each). The log(B) parameter was a function of
practice and word vs. non-word accumulator (4 x 2 = 8 parameters), with the
latter factor accommodating potential response biases favouring words or non-
words. The v parameter was a function of practice, word vs. non-word
accumulator and correct vs. error accumulator (4 x 2 x 2 = 16 parameters). The
latter two factors allowed for the accumulator for the correct response to have a
larger input than the accumulator for the wrong response, and for this
difference, and the average input, to differ for words and non-words. Finally, we
assumed a fixed value of unity for the sv. As with fixing moment-to-moment
noise standard deviation in the RD model], fixing the sv parameter in this way
more than serves to make the LBA models identifiable*. The resulting model
required estimation of 33 parameters, including a single st parameter.

The rate parameter design gives the top LBA model similar flexibility to

Dutilh et al.’s (2009) RD model. Their model allowed both v and sv to vary with

4This parameterization, which allows the sum and difference of correct and error accumulator
rates to differ but fixes their variability, is mathematically equivalent to fixing the sum and
allowing the difference and variability to differ. As a reviewer pointed out the psychological
interpretation of these two parameterizations is, however, quite different, and further that we
might have obtained different results if both the sum and variability were allowed to change with
practice (i.e., minimally enforcing identifiability by fixing only one or the other at one level of
practice).
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practice and between word and non-word stimuli. Differences in v alone produce
positively correlated effects on speed and accuracy. For example, if v is higher for
words, their speed and accuracy will be greater than for non-words. Differences
in sv between words and non-words can break that correlation. For the LBA rate
parameters speed is largely a function of the total input to both accumulators,
whereas accuracy is largely a function of the difference in input between correct
and error accumulators. Allowing both to vary gives the LBA model the ability to
accommodate a range of speed-accuracy relationships between words and non-
words. Note that fixing sv=1 serves only to scale the effect of the difference (i.e.,
the same overlap of correct and error rate distributions for any fixed sv can be
achieved by an appropriately scaled difference).

The set of models was derived from the top model by removing (where
applicable) each factor singly, then in all pairwise combinations and so on.
Removal terminated when all factors were removed, resulting in an intercept-
only linear model (i.e., the same estimated value for all cells of the design
matrix). An exception was made for the correct vs. incorrect response factor
applied to mean rate, as equal values are clearly inconsistent with the observed
above chance performance. Hence, all linear models for v contained this factor.
The models created by removal were then combined in all possible ways across
the different parameter types to create the final set of 64 models.

The simplest model (i.e., intercept-only for all parameters except v, which
was allowed to vary between correct and error accumulators) was fit first with
maximization starting from values estimated by a heuristic applied to the data.
The estimate of this model then provided starting guesses for all models

containing one added factor (so more complex models were fit from several
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starting points), these models in turn provided starting guesses for models with

an added factor and so on until the top model was fit.

Model Selection and Parameter Estimates

We used the maximized likelihood for each model to calculate the Bayesian
Information Criterion (BIC) model selection statistic. BIC model selection takes
into account goodness of fit but also adds a complexity penalty proportional to
the number of parameters in a model. Hence, BIC will only support the addition
of parameters to a model if the improvement in fit is sufficient to outweigh the
increased complexity penalty. We report BIC results for the set of 64 models we
fit to each participant’s data in terms of posterior model probabilities (pgic,
Wagenmakers & Farrell, 2004). This provides a convenient way of expressing
relative support amongst a set of models, as pgic values sum to one over the set.
Alternately, if it is assumed the true (i.e., data generating) model is in the set pgic
approximates the probability that a given model is the true model.

For all but participant S1 BIC selection favoured the simplification of the top
model obtained by removing the practice effect on v, a model with 21 parameters
(Al: pric =.965, A2: pric >.999, and S2: pgic = .878). We refer to this model as the
majority model. For S2 there was also some support for the model that removed
the effect of practice on ter from the majority model (18 parameters, pgic = .116).
For A1 there was weaker support for the model that removed the effect of
practice on B from the majority model (15 parameters, pgic = .035), whereas for
A2 there was negligible support for any other model. For S1 the model that
removed only the stimulus type effect on v from the top model had the most
support (25 parameters, pgic = 0.939), with the top model garnering the

remaining support (psic =.061).
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When sample size is large BIC model selection typically supports simpler models
than the most commonly used alternative, the Akaike Information Criterion (AIC, see
Burnham & Anderson, 2004). This was the case for our fits to Dutilh et al.’s (2009)
data, where AIC always selected the top model. This is perhaps not surprising
given the number of data points per participant, around 10,000, means the AIC
complexity penalty is less than a quarter of BICs. For both methods the large
sample wise also means even very small effects will find support. Often such
small effects, although real, are of little interest, particularly when model
selection is at the individual participant level.

Figure 4 plots the size of effects on parameter estimates from the top model.
Figure 4a clearly shows that effects on ter were small and not systematically
related to practice for any participants®. Figure 4b shows that, consistent with
the pgic results, only participant S1 had a large and systematic effect of practice
on mean rate (v). Figure 4c shows that practice had little effect on start-point
noise (A) for participant S1, but a large effect on the distance from the top of the
start point distribution to the evidence boundary (B). For participant Al
improvements with practice were almost entirely due to a decrease in start-
point noise. For participant A2, in contrast, the improvement with practice was
almost entirely due to a decrease in B. Finally, participant S2 displayed opposing
trends in these two parameters: a decrease in B and an increase in A with
practice.

Figure 2 plots the fits of models retaining only the large and systematic

effects of practice just discussed. For participant A1 only the practice effect on A

5 Estimates of st for the top model were 0.13s, 0.09s, 0.13s and 0.12s for participants A1, A2, S1
and S2 respectively. The values of these estimates did not change much for the other models
discussed.
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was retained (a 12 parameter model). For participant A2 only the practice effect
on B was retained (a 15 parameter model). For participant S1 the practice effects
on v and B were retained (a 24 parameter model), and for S2 only the practice
effects on A and B were retained (an 18 parameter model). We describe these
models as the simplified models. Figure 2a shows the simplified models provide
a quite accurate account of correct RT distribution, with some exceptions when
the first block was markedly different from nearby blocks. Figure 2b shows that
the simplified models also provided a good account of accuracy, again with some
exceptions for the first block. We do not believe the misfit of the first block is of
much import. The first block is likely to be subject to warm-up and other effects
peripheral to practice effects. Further, the spline used to model practice changes
imposes a gradual change that would make it difficult for any model to capture
markedly different behaviour in the first block.

Figure 5 plots the parameter estimates for the simplified models, with the
exception of ter, which was 0.44s, 0.33s, 0.38s and 0.26s for participants A1, A2,
S1 and S2 respectively. Figure 5a plots mean rate estimates for correct and error
accumulators and Figure 5b plots the difference between them. The rate for the
correct accumulator is a major determinant of overall speed. For example, the
correct rates are greater on average for the speed participants than the accuracy
participants. The difference shown in Figure 5b is a major determinant of
accuracy. For example, greater overall non-word than word accuracy for
participant S2 is reflected in a larger difference for non-words than words.

Figure 5 shows that the simplified models attribute practice effects to quite
different parameter changes for each participant. Figures 5c and 5d indicate that

the effect of practice for participant S2 was due to both a decrease in A and an



18

increase in B. Both changes increase accuracy with practice but have opposite
effects on speed. The larger decrease in A dominates (note that A and B
parameters are shown on the same scale), which causes an overall increase in
speed with practice. To make the latter effect clearer Figure 5e plots the average
evidence additional to the starting evidence that must be collected in an LBA
model to trigger a decision, B+A/2. This quantity and the rate at which evidence
is collected are the major determinant of speed in the LBA. Given the rate does
not change with practice for participant S2 their decreasing RT is solely
attributable to the decrease in B+A/2.

Decreasing A is the sole cause of practice effects for participant Al. It
underpins the large increase in speed with practice, but causes only a small
increase in accuracy as it is near ceiling. In contrast, the large increase in speed
with practice for participant A2 is explained solely by a decrease in B. This
decrease causes a corresponding decrease in accuracy with practice, although
once again the effect is small because performance is near ceiling.

Only participant S1 has practice effects that are attributed to changes rate.
Participant S1’s strong increase in accuracy early in practice is due to the
increasing difference between correct and error accumulator rates shown in
Figure 5b. Later in practice B also increases, which contributes to a continuing
increase in accuracy. Participant S1’'s small increase in speed early in practice is
explained by an increase in the correct accumulator’s rate early in practice. A
small decrease in speed late in practice is explained by a strong increase in B.
During the middle part of practice the rate and boundary effects trade-off,

resulting in relatively constant speed.
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Discussion

We examined Dutilh et al.’s (2009) data on practice, word vs. non-word and
speed vs. accuracy instruction effects in the lexical decision task by fitting the
LBA model of rapid choice. Our psychological interpretation of the practice
effects, based on estimated LBA model parameters, differs in some respects from
that implied by Dutilh et al.’s interpretation based on fits of the Ratcliff diffusion
(RD: Ratcliff & Smith, 2004) model. Donkin et al. (2011) reported results for fits
of each model to data simulated from the other that were consistent with these
models potentially supporting conflicting interpretations of the same data.
However, they did not find any evidence of such differences in fits to a variety of
empirical data sets.

Our results likely differ for two reasons. First, in the empirical data sets
examined by Donkin et al. (2011) experimental manipulations tended to
selectively influenced only one type of parameter. For Dutilh et al.’s (2009)
study, in contrast, the practice manipulation affected almost every RD model
parameter. Second, the number of data points per participant is much greater in
Dutilh et al.’s study than any examined by Donkin et al., and indeed in most other
studies of rapid choice. These two characteristics were exactly why we focused
on Dutilh et al.’s data in order to test Donkin et al.’s conclusions. Of course, to the
degree they make this data unrepresentative of other data collected in rapid
choice paradigms, these characteristics also limit the implications for more

typical studies of our finding of divergent results®.

60ne might be tempted to attribute the divergence to different estimation methods. We find this
to be doubtful. The influence of Dutilh et al.’s (2009) priors on their posterior estimates is likely
to be minimal given the large amount of data involved. Our use of model selection is also not
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With this limitation in mind, we now discuss the implications of the
differences we found focusing on the three types of parameters typically of
greatest psychological interest: non-decision time (ter), the mean rate of evidence
accumulation (v) and average amount of evidence in addition to the starting
evidence that has to be accumulated to trigger a decision. As discussed by
Donkin et al. (2011) the latter quantity corresponds to half of the RD model
boundary separation (a/2) and B+A/2 for the LBA model (Figure 5e).

The strongest difference between models relates to practice effects on non-
decision time. The RD model estimated substantial effects on non-decision time,
particularly for the accuracy participants, where decreases of 0.1s - 0.15s
occurring over an extended period of practice. These changes were paralleled by
similarly substantial and extended decreases in faster responses (i.e., the 10t
percentile of correct RT distribution) with practice. The LBA model was able to
explain the same changes purely in terms of the amount of evidence that had to
be collected to trigger a decision.

These results are consistent with Donkin et al.’s (2011) finding of changes in
both boundary separation and non-decision time when the RD model is fit to
simulated LBA data with a boundary change. They suggest the potential for
differences in psychological interpretation between the RD and LBA models
when a manipulation strongly affects fast responses. In Dutilh et al.’s (2009)
case substantially different psychological interpretations result. The RD fits

suggest a two-process explanation of practice effects in terms of both decision

likely the cause; our parameter-based inferences were consistent between the most complex
models (Figure 4) and simplified models (Figure 5) that we fit.
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and non-decision mechanisms, whereas the LBA fits suggest a single, purely
decision-process explanation.

Less expected based on Donkin et al.’s (2011) simulation findings are the
differences we observed in rate estimates between models. The RD and LBA
agreed on an increase in rate with practice for participant S1 and little effect of
practice on rate for participant A2. However, the models disagreed for the other
two participants, with the RD estimating strong increases in rate with practice,
whereas the LBA estimated no effects. There was greater agreement on the
average amount of evidence that had to be accumulated for a decision; both
models agreed that this decreased with practice for all except participant S1. For
participant S1 the LBA found an increase later in practice, whereas the RD model
found no practice effect.

How are such apparent contradictions to be resolved? Although we have no
general prescription, the particular case we examined here suggests some
remedies. For example, the strong effects of practice on non-decision time
identified by the RD model suggest differing effects will be found before and
after practice for manipulations affecting the constituents of non-decision time,
stimulus encoding and response production. Another approach could use the
individual differences in neuroimaging measures that are associated with
evidence boundary (e.g., Forstmann et al., 2008, 2010) and rate (e.g., Ho et al,,
2009) changes. Our RD and LBA model fits clearly make differing predictions
about individual differences in these measures as a function of practice.

In conclusion, the answer to the question posed in the title of this paper is, at
least in some circumstances, yes, the LBA and RD models can lead to different

conclusions about psychological mechanisms. Hence, our results sound a note of
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caution when claims are made about psychological processes based on the fit of
only one or other model. As a reviewer noted, this caution is timely given the
increasing availability of software that facilitates fitting of these models. We
would add, however, that we see the much common practice of interpreting
partial characterizations of rapid choice behaviour, such as mean RT or accuracy,
or even both together, as even more fraught. Rather, we recommend that
researchers supplement inference based on fitting of a variety of evidence
accumulation models and model parameterizations to behavioural data with

evidence from converging experimental manipulations and measures.
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Figure Captions

Figure 1. A Ratcliff Diffusion model of the lexical-decision task.

Figure 2. Dutilh et al.’s (2009) data (grey points joined by dotted lines) for
accuracy (A1l and A2) and speed (S1 and S2) emphasis participants, and fits of
selected LBA models (darker solid lines). (a) 10t, 50t (median) and 90t

percentiles for correct responses and (b) Percentage of correct responses.

Figure 3. A Linear Ballistic Accumulator (LBA) model of the lexical-decision task.

Figure 4. Parameter estimates from the top (most complex) LBA model. (a) non-
decision time, (b) mean rate, (c) top of the start-point noise distribution and (d)
distance from the top of the start-point noise distribution to the response
boundary. FALSE = error-response accumulator, TRUE = correct-response

accumulator, N = non-word stimulus, W = word stimulus.

Figure 5. Parameter estimates from simplified LBA models. (a) mean rate, v, (b)
correct minus error accumulator mean rate, (c) top of the start-point noise
distribution, 4, (d) distance from the top of the start-point noise distribution to
the response boundary, B, and (e) the average amount of evidence in addition to
the starting evidence requried to make a decision. FALSE = error-response
accumulator, TRUE = correct-response accumulator, N = non-word stimulus, W =

word stimulus.
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